SMBus Control Method Interface
Specification

Version 1.0
December 10, 1999

Copyright O 1999 Duracell Inc., Energizer Power Systems,
Fujitsu Personal Systems Inc., Intel Corporation,
Linear Technology Corporation, Maxim Integrated Products,
Mitsubishi Electric Corporation, PowerSmart Inc., Toshiba Battery Co.,
Unitrode/Benchmarg, USAR Systems. All rights reserved.

Questions and comments regarding this For additional information on SMBus
specification may be forwarded to: Specification, visit the SBS-IF at:
smbus@sbs-forum.org http://www.sbs-forum.org/smbus/

THIS SPECIFICATION OR THE SAMPLE CODE PROVIDED HEREWITH OR REFERENCED HEREIN
IS PROVIDED "AS 1S WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE. IN
NO EVENT SHALL ANY OF THE CO-OWNERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, LOSS OF INFORMATION) ARISING OUT OF THE USE OF INFORMATION OR
THE SAMPLE CODE PROVIDED HEREWITH OR REFERENCED HEREIN. THE AUTHORS
DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY
PROPRIETARY RIGHTS, RELATING TO USE OF INFORMATION IN THIS SPECIFICATION. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED HEREIN.

IN NO EVENT WILL ANY SPECIFICATION CO-OWNER BE LIABLE TO ANY OTHER PARTY FOR
ANY LOSS OF PROFITS, LOSS OF USE, INCIDENTAL, CONSEQUENTIAL, INDIRECT OR SPECIAL
DAMAGES ARISING OUT OF THIS SPECIFICATION OR THE SAMPLE CODE PROVIDED
HEREWITH OR REFERENCED HEREIN, WHETHER OR NOT SUCH PARTY HAD ADVANCE
NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. FURTHER, NO WARRANTY OR
REPRESENTATION IS MADE OR IMPLIED RELATIVE TO FREEDOM FROM INFRINGEMENT OF
ANY THIRD PARTY PATENTS WHEN USING THE INFORMATION OR SAMPLE CODE PROVIDED
HEREWITH OR REFERENCED HEREIN.

*Third-party brands and names are the property of their respective owners.

Document Revision History

Revision Date Author Reason for Changes

Rev. 1.0 10 Dec 1999 | SBS-IF Initial release.

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Table of Contents

R 1011 (oo [0 ot £ [OSSOSO SPTP TR 1
O R I 10 1 AU o [=T ool SO SRS 1
1.2 REIGtEU DOCUMENESviviitiieiieteiteieete sttt sttt sttt sb e et b et et b e et b et e ke eb et et e sb et ebe st ne et e abe st et e abentereabe e 1
1.3 DALA FOIMAL. ... ettt bbbt bbbt b e b e eh e e e b e bt e Rt e Rt bt e Rt e bt e Rt e s e e n e n e e n e r e 1
O =1 4 111] oo V2SS 1

2 @ 1Y 1 1 SO SS 3
2.1 LT | SO PUSPRRTR 3
2.2 ProbIem STAtEMENTocii e e e e a e s b e et e e e e tb e st e e s re e be e teeneeeaneeaeenree e 3
2.3 K {0] 18] (o] PRSPPI 3

231 SMBUS CIMI ODJECES ...ttt e bbbttt st e b e bt ebe e st et et e sbesbesbe b 4
2.3.2 NAMESPACE HIBTAICHY ... it bbbttt be b e b sbe s e e e e b saesbenbe e 5
N o (o T T AN [o (] To USSR 5
2.5 PACKEL EFTOr CRECKING ...c.viitiitiiiieiiiiee ettt bbbt bbbt e e b et sb e e b e e e e seeebe e e 5

K1Y/ 121U O 1V @ o =Tt £ P 6
TN R @ Y < 4T ST USRS 6
3.2 ASL DEFINITION ..ttt b bbbt b bbb bR b bbbttt nes 6

3.2.1 =0 U T =T =T 0] S 6
3.22 N BITIE L.ttt bbb b h et b bR R R R e e R R R R R e AR R Rt Rt e Rt e r b e n e 7
3.23 DeVICE THENTITICALIONeiiieiteee et ettt bbbt nbns 7
3.3 CONLIOL MEINOGS. ...ttt bbb bbbt bbbt e st b et b et b bt nes 7
3.3.1 SMBUS INFOrMation ((SBI) .ccuviiiicieie sttt sreete e e enaesaennenrennean 8
3.3.2 SMBUS Data REAA ({SBR)cuviiiie ittt ettt ne e e e e snenne e nne s 8
3.3.3 SMBUS Data WILE (SBWW) ...uiiiecieieeiie ettt sttt ettt st et s e e saestesaeaneesaenseaeseennesrennans 9
3.34 SMBUS Data TranSTer ((SBT) ...uceiiriiierisiseeiesteste st ste e e ettt st e e e seessesaesrestesneeneesaesnesresnens 9
3.35 SMBuUs Alert INfOrmation ((SBA)ocviiiieeeiee sttt sttt nrenre e 10
B (o (o Toto] BN =T o] g SO 10
34.1 ST = (0] (0T] P 10
34.2 ST =TV (0] (oot] SR 11
3.4.3 1= I 2 (0] 0o o] £ 11
35 DALA STIUCTUIES ...ttt et b bbbt bbb e s e e e bt b eb e e bbb e e b e e s et nn e b e b b ens 12
3.5.1 SIMB _INFO ...ttt ettt bbbtk bbbt b bt bbb bbbt b et 12
3.5.2 SMB_DEVICE ..ottt et ek bbbtk bbbt b et bbbt nn e 13

ADPPENAIX A = DEEA TYPES -.eneiteiteitt ettt etee ettt sttt sttt s et e b e s be bt e b e e bt es e e e e b e ke sbeebeebeeb e eh e e e e beebeebeeneebesbenbesbeaneas 16
N D - - W o] 11 | PSPPSR 16
A2 DEVICE AUAIESSING ...eteuieieeteie ettt ettt et ee bttt te et e e e e be s beebe s beebe e bt e Rees e e es e beseeebeebeebeere e b enbesbesbenneaneas 16
AN T = TU TS o 0] (o Tolo] [SRS 16
N - L0 L3 0 Lo L1 SRR 17

APPENIX B - SAMPIE ASL ..o 19
2300 R Y/ o T | [T =T] [P 19

B.L1 ASL OVEIVIBW. ...oeitiieiiite ettt ettt ettt bbb bbb s b b e b e et e e b e s e et e eb e ebe st e s e ebe st e s e ateneas 19
B.1.2 EC-SMBUS SAMPIE ASL ...ttt ettt s e eaesaenbestesteereeneeseeneeeenrenneanes 20
2 B B 1] (o] o T Ly 410 - 32
B.2.1 ASL OVEIVIBW. ...ttt itttk sttt sttt bbbt b e bbb bt e b b e b e e b ne et e eb e ebeneebeebeneereabe e 32
B.2.2 PHIX4 SMBUS SAMPIE ASL.....oiiiiicieiice sttt s re e sneena e e e e sresresneenensesreeneanes 32

Page iii

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

List of Tables

Table 1: _SBR ProtOCOI IMAPPINGottt sttt bbbt st e st e s e e e et e sbeebeeeeaneesee e enbesaeeaeeneans 10
Table 2 SBW ProtOCOI IMBPPING.ottt ettt sttt e be s besbesbeebeemeeneesaesbeebeeneaneeaeeabesaeeaeeneans 11
Table 3: _SBT ProtOCOI IMAPPING ...ttt ettt b et b e bt s et e b e b b e s b e e ae e s e e e e besaesbeene e 11
TADIE 41 ProtOCOI WAIUES. ...ttt bbb bt bbbt R e b e b e b e s bt bt et e ene e e e b e besbeebeene e 17
Table 5: StAtUS COUE VAIUEBS ..ottt b bbbt bt b et et e s b e bt et e e st e s e e b e besaeebeene e 18

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

SMBUS CIMI ATCRITECTUNE ...ttt b etttk bbb bt et eb e nn et abenn s b 4
Example ACPI Namespace HIBIAICHYcoii ittt sttt e see b ene e 5
DAtA FOIMALeiuiiiiiiete bbbt 16
S1aVe AQArESS ENCOUINGcuveiitiiieitt ettt bbbt e e bbb e b e b e e bt e b e e e e besbesbesaeeneas 16
e o] (oToto] I =Xy Vol o |1 o [P TOSTTURUP TSP 17
StAtUS COAE ENCOUING ... ittt sttt bbbttt e s e sb e b e sk s b e sb e s beebe e b e e e e besbesbesaeeneas 17
MODIIE EXAMPIE SYSIEM ...ttt ettt e e bbbt b et b e e b e et et sb e besbeebeenes 19
DeSKIOP EXAMPIE SYSIEM ..ottt bbbttt b e bbb bt be et e e et et sbeebeene e 32

Page iv

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

1 Introduction

This specification defines a System Management Bus (SMBus) interface for Advanced Configuration and Power
Interface (ACPI). This interface, referred to as the SMBus Control Method Interface (CMI), allows the capabilities
of an SMBus segment to be easily utilized regardless of hardware origin or implementation.

This document’s scope is limited to the definition and use of the SMBus CMI. The appendix provides sample ACPI
Source Language (ASL) code illustrating how to implement this interface for several example systems.

1.1 Target Audience

This specification is intended for use by the following audience:

e OEMs and I1SVs developing platform firmware.

* OEMs and IHVs developing SMBus devices.

» Others interested in accessing SMBus devices in the ACPI environment.

Basic understanding of ACPI and the SMBus is assumed.

1.2 Related Documents

[1] Advanced Configuration and Power Interface Specification v1.0b, (11996, 1997, 1998 Intel Corporation,
Microsoft Corporation, Toshiba Corporation. This specification and other ACPI documentation are available at:
http://www.teleport.com/~acpi/

[2] System Management Bus Specification, Revision 1.1, SBS-Implementers Forum, CO0December, 1998. This
specification is available at: http://www.sbs-forum.org/smbus/index.html

The following Smart Battery Specifications are available at: http://www.sbs-forum.org/

[3] Smart Battery Data Specification, Revision 1.1, SBS-Implementers Forum, C0December, 1998

[4] Smart Battery Charger Specification, Revision 1.1, SBS-Implementers Forum, [1December, 1998

[5] Smart Battery Selector Specification, Revision 1.1, SBS-Implementers Forum, [1December, 1998

[6] Smart Battery System Manager Specification, Revision 1.1, SBS-Implementers Forum, [0December, 1998

1.3 Data Format

All numbers specified in this document are in decimal format unless otherwise indicated. A number preceded by
’0x” indicates hexadecimal format, and a number followed by the letter ‘b’ indicates binary format. For example, the
numbers 10, O0x0A, and 1010b are equivalent.

1.4 Terminology

Acronym Description
ACPI Advanced Configuration and Power Interface. See http://www.teleport.com/~acpi/.
AML ACPI Machine Language. See http://www.teleport.com/~acpil.
ASIC Application-Specific Integrated Circuit.
ASL ACPI Source Language. See http://www.teleport.com/~acpil.
BIOS Basic Input / Output System.
CM Control Method.
CMI Control Method Interface.

Page 1

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Acronym Description

EC Embedded Controller.

HC SMBus Segment Host Controller.

ICH Intel I/O Hub Controller.
OEM Original Equipment Manufacturer.

oS Operating System.
PlIX4 Intel Chipset with an SMBus Host Controller.

SCI System Control Interrupt.

SMBus System Management Bus. See http://www.sbs-forum.org/smbus/index.html.

Page 2

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

2 Overview

The ACPI specification defines an SMBus interface based solely on an embedded controller (EC) implementation.
The limited nature of this definition prohibits its use for SMBus host controllers that are not EC-based. This
specification defines a new ACPI-based SMBus interface (the SMBus CMI) that facilitates access to all types of
SMBus host controller hardware.

The SMBus definition presented in this specification varies greatly from its ACPI-native counterpart. As implied in
the name, SMBus CMI objects utilize ACPI control methods to provide a similar (but more advanced) feature set.
For example, the interface defined in this specification supports packet error checking protocols, exposes the
hardware capabilities of an SMBus controller, and facilitates the enumeration of SMBus devices on a given segment
—all of which are unavailable in the native ACPI model.

It is important to note that a complete SMBus solution requires driver support from the target operating system. This
driver would facilitate the use of SMBus CMI objects by the OS, system software, and user applications. In
conjunction to this specification, the Smart Battery System Implementers Forum (SBS-IF) is developing the required
driver support for ACPI-compatible Windows™ operating systems. For more information see the SBS-IF web at:
http://www.sbs-forum.org/smbus/.

2.1 Goals

The primary goals of this specification are to:

» Provide an efficient, robust, and well-integrated ACPI interface that supports both EC- and non-EC-based
SMBus host controller hardware.

» Facilitate system-wide synchronization for access to SMBus resources.

e Ensure that this new interface is compliant with versions 1.0 and 1.1 of the SMBus specification, and can be
easily extended to support features targeted for future versions.

2.2 Problem Statement

The lack of native support for non-EC-based SMBus host controllers in ACPI is the primary problem being
addressed by this specification. The absence of a well-defined ACPI interface prohibits the use of a standard OS
software stack, which in turn deters upper-level software from utilizing the services available from these SMBus
segments.

Not having a well-defined interface also makes it difficult to synchronize access to SMBus segments from their many
consumers (firmware, ACPI, OS, system software, applications, etc.). For example, legacy manageability software
that directly accesses an SMBus-based thermal sensor may be unaware that ACPI uses the same bus/device in its
management of a thermal zone. This contention could result in (best case) data corruption or (worst case) a complete
system lockup.

2.3 Solution

The solution presented in this specification addresses the above problems by providing a flexible interface that is
capable of abstracting all types of SMBus host controller hardware. Unlike the SMBus interface defined in the ACPI
specification (which relies on a special SMBus operation region), this definition uses a set of control methods whose
implementation is determined by the OEM.

The SMBus CMI includes a feature set equivalent to ACPI’s SMBus interface by supporting the capabilities defined
in version 1.0 of the SMBus specification. This includes support for all device communication protocols (e.g. read
byte), SMBus alerts, and other basic elements. The SMBus CMI also provides features not available in ACPI’s EC-
SMBus interface, exposing:

» Packet error checking.

Page 3

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

» Hardware capabilities of an SMBus host controller.
» Information on each fixed-address device residing on a segment.

2.3.1 SMBus CMI Objects

OEMs implement the interface defined in this specification by defining SMBus CMI Objects in ASL. Each SMBus
CMI object represents a single SMBus segment and is treated as a unique device in the ACPI namespace. Each
SMBus CMI object implements the set of control methods required by this specification, but does so in the manner
best suited to the particular hardware. Figure 1 illustrates the SMBus environment resulting from this specification
for an example system.

Figure 1: SMBus CMI Architecture

Other SMBus
Consumers

Smart Battery
Stack

SMBus
Software Stack

(08
ACPI
SMBus CMI Object SMBus CMI Object
Device(SMBO) { Device (SMBL1) {
Name(_HID, "SMBUS01") Name(_HID, "SMBUS01")
Name(_UID, 0) Name(_UID, 1)
_SBI() /I Information _SBI() /I Information
SBR() //Read SBR() //Read
SBW() // Write SBW() // Write

SBT() /I Data Transfer

SBT() /I Data Transfer :
_SBA() 1 Alerts

"SBA() [/ Alerts

}

J 4

Hardware
OD0DOOOODOO OD0DOOOODOO
e} e} e} e}
[[[[
d c E PIIX4/
o o q ICH B
[[[[
OD0DOOOODOO OD0DOOOODOO
SMBus SMBus
Smart Battery Alert on LAN

Maxim 1617 Heceta 2/3/4

As implied by this diagram, the interface can support any number of SMBus segments. Each segment’s definition is
unique, giving OEMs full flexibility in the design of their platforms. For example, a notebook system may use an
EC-based SMBus for the Smart Battery System (SBS) to ensure security, but opt to install the Alert on LAN* and
other manageability ASICs off of the chipset’s built-in SMBus controller. Additionally, EC-based segments may be
modeled using the ACPI-native (operation region) interface, while other segments would be modeled as SMBus CMI
objects.

Page 4

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

2.3.2 Namespace Hierarchy

As with other devices, SMBus CMI objects are added to the ACPI namespace in a manner that represents the
functional hierarchy of the system. For example, the first SMBus host controller shown in Figure 1 happens to be
connected via a PCl-based EC. The corresponding SMBus CMI object (* SMBO’) would therefore be located in the
ACPI namespace as a child of EC and PCI devices, as shown in Figure 2.

Figure 2. Example ACPI Namespace Hierarchy

&= _SB
5 PCIO

&= ECO
&= SMBO

2.4 Hardware Alerting

The ability of SMBus host controller hardware to asynchronously notify consumers of a pending SMBus alert is
referred to by this specification as hardware alerting. This highly desirable capability relieves upper-level software
from implementing poll-based policies and generally results in a much more responsive and accurate environment.

The ACPI-defined mechanism for generating asynchronous notifications is through a system control interrupt (SCI).

An SCI occurs whenever one or more non-masked bits are set in the ACPI event status register. Each bit in the event
status register has associated AML that serve as the SCI interrupt handler. It is the job of this AML to determine the
root cause of the SCI and perform the required action. See the ACPI specification for more information.

The AML code that handles an SCI for an SMBus alert simply issues a Not i f y command targeting the associated
SMBus CMI object. For example, a smart battery may generate an SMBus alert when its remaining charge drops
below some predefined level. The EC-SMBus host controller would receive this alert, set the corresponding GPE
bit, and trigger an SCI. ACPI gets the SCI, realizes that the GPE bit has been set, and calls the AML ‘interrupt
handler’ control method associated with this bit. Assuming the EC-SMBus is modeled in the namespace as

“\ _SB. ECO. SMBO’ , the AML code would simply issue the command:

Not i f y(\ _SB. ECO. SMBO, 0x80)

2.5 Packet Error Checking

Section 7.4 of the System Management Bus Specification (Version 1.1) describes how packet error code (PEC) is
implemented for SMBus devices to provide improved communication reliability and robustness. Part of this
implementation requires the transmission of an frame check sequence (FCV), which is calculated using an 8-bit
cyclic redundancy check (CRC-8).

This capability is optional for the SMBus segments (and devices residing on these segments) compliant with version
1.1 of the SMBus specification. This specification allows segments and devices to advertise their support for packet
error checking through a ‘hardware capability’ bitmap (see sections 3.5.1.1 and 3.5.2.2).

This specification defines an interface that enables software to discover if a particular SMBus segment (controller)
and SMBus device support PEC. Software can then specify if the SMBus controller should use PEC protocols but
the actual CRC checking is handled by hardware.

Page 5

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3 SMBus CMI Objects

This chapter provides details on how to abstract SMBus segments through the use of SMBus Control Method
Interface object definitions.

3.1 Overview

Below is an overview of the process used to develop SMBus CMI objects in ASL. Note that the device definition
and implementation of the _SBI (SMBus Information) control method are required for all SMBus CMI objects.
The implementation of other control methods depends on the capabilities of the host controller and devices existing
on the segment.

» Define a unique device (e.g. - SMBO’) for each SMBus segment. As stated previously, these devices
should be located in the ACPI namespace in a manner that represents the functional hierarchy of the system.
Each device must specify * SMBUSO1’ asits _Hl Dand use a unique _Ul Dvalue.

e Implement _SBI (SMBus Information) control method. The data returned by this control method identifies
the characteristics of the segment, including the hardware capabilities of the host controller and a listing of
all fixed-address devices connected to the segment.

« Implement the bus protocols required for communication to the SMBus devices that exist on the given
segment. Read protocols are implemented using the _ SBR control method, write protocols are
implemented using the _SBWcontrol method, and the process call protocol is implemented using the _SBT
control method.

* Implement the _SBA (SMBus Alerting) control method if the segment supports SMBus alerts.

3.2 ASL Definition

The ACPI definition for SMBus CMI objects is provided below. Details on control methods are provided in section
3.2.2. Details on SMBus properties are provided in section 3.4.
Devi ce(SMB<i d>) {

Name(_H D, “SMBUS01”) // Hardware I D (PnP | D)

Name(_UI D, <ui d>) /1 Unique lIdentification

Met hod(_SBI, 0) {.} /1 SMBus | nformation

Met hod(_SBR, 3) {.} /1 SMBus Data Read

Met hod(_SBW 6) {.} /!l SMBus Data Wite

Met hod(_SBT, 6) {..} /1 SMBus Data Transfer

Met hod(_SBA, 0) {.} /1 SMBus Alert Information

}

Note: Required elements are marked in bold in the ASL definition above.

3.2.1 Requirements

Each SMBus CMI object must comply with the device definition specified in sections 3.2.2 and 3.2.3, and must fully
implement the _SBI control method. The implementation of other control methods depends on the capabilities of
the host controller and devices existing on the segment. Required elements are marked in bold in the ASL definition
(above).

It should be noted that although _ SBR, _SBW and _SBT are not required, it is impossible for software to
communicate with an SMBus device without the implementation of at least one of these control methods. Within
each of these control methods, support is needed only for the protocols required to communicate with the devices on
the segment. For example, assume that a single device exists on an SMBus segment and it only communicates using
the read byte protocol. For this segment the _SBR control method would be implemented to support this protocol,

Page 6

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

but implementations of _SBWor _SBT would not be needed. Additionally, SBR could return the unsupported
protocol status code for all read protocols other than read byte.

Implementation of _SBA is only necessary if the segment is capable of generating SMBus alerts. This includes both
segments that must be polled for alert detection and those that can generate ACPI-visible asynchronous notifications.

3.2.2 Name

SMBus CMI object names, as with any object in ACPI, must follow the ASL naming convention defined in section
15.1.2 of the ACPI Specification. Below is the recommended format for specifying the name of an SMBus CMI
object.

Devi ce(SMB<i d>)

<id> A single character identifier that creates a device name that is unique throughout all ACPI device
objects. This specification recommends using a zero-based numeric value. For example, * SMBO’
would be used as the device name for the first SMBus segment.

3.2.3 Device ldentification

SMBus CMI objects utilize the _HID and _UID device identification objects to facilitate Plug and Play enumeration,
providing the capability for the ‘automatic’ enumeration by the OS.

Name(_H D, “SMBUS01")
Used to specify the Plug and Play hardware ID for SMBus CMI objects.
Narme(_Ul D, <uid>)

<ui d> A 32-bit value used to specify a unique identifier for this SMBus CMI object. This specification
recommends using the same value as used for the <i d> field of the device name. For example,a _UID
value of 0 (zero) would be used for the device * SMBO’ .

3.3 Control Methods

By convention ACPI control methods can accept multiple input arguments as separate objects, but can return only a
single object. The single object returned may be a packet. In this specification the SMBus control methods always
return output arguments as a package of one or more elements. For example, the _SBI control method output
argument is a package containing the CMI version and a SMB_| NFOstructure. The _SBWecontrol method output
argument is a package with the 1% element containing the status code.

When a control method returns an error code it is placed in the status code element of the output package and all
other elements of the output package must be ‘0" (zero).

Page 7

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3.3.1 SMBus Information (_SBI)

Description: Returns a SMB_| NFO structure describing the general properties of an SMBus segment.

Input

Argument(s) <none>

Output The version of the SMBus Control Method Interface Specification that
Arguments(s): the SMBus CMI objects are compliant with. The major version is

specified in the high nibble, the minor version in the low nibble. For
example, the value 0x10 identifies the interface defined in version 1.0
of this specification. This byte value is encoded into an ASL integer as
described in section A.1.

SMBus Information (Buffer) A SMB_| NFOstructure as a byte array. See 3.5.1.

SMBus CMI Version (Integer)

Notes: This control method returns information on the general characteristics of the SMBus segment. This
includes the hardware capabilities of the host controller and basic information on each fixed-address
device existing on the segment.

3.3.2 SMBus Data Read (_SBR)

Description: Reads byte, word, or block data from a device residing on an SMBus segment.

Input The bus protocol to use during an SMBus request. This byte value is
Argument(s): Protocol Value (Integer) encoded into an ASL integer as described in section A.3.

The slave address of the target device. This byte value is encoded

Slave Address (Integer) into an ASL integer as described in section A.2.

The device-specific command code. This byte value is encoded into

Command Code (Integer) an ASL integer as described in section A.1.

Output Status Code (Integer) The return status code. This byte value is encoded into an ASL
Argument(s): 9 integer as described in section A.4.

The length (in bytes) of the data read from the device. This byte value

Data Length (Integer) is encoded into an ASL integer as described in section A.1.

The data read from the device. This byte, word, or block data is
encoded into an ASL integer (byte/word) or buffer (block) as described
in section A.1 — where the return data type depends on the protocol
used.

Data (Integer | Buffer)

Notes: This control method is used to implement the read quick, receive byte, read byte, read word, and read
block protocols. See section 3.4 for additional details on this control method’s implementation.

Page 8

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3.3.3 SMBus Data Write (_SBW)

Description: Writes byte, word, or block data to a device residing on an SMBus segment.
Input The bus protocol to use during an SMBus request. This byte value is
Argument(s): Protocol Value (Integer) encoded into an ASL integer as described in section A.3.
Slave Address (Integer) The slave address of the target device. This byte value is encoded
9 into an ASL integer as described in section A.2.
The device-specific command code. This byte value is encoded into
Command Code (Integer) an ASL integer as described in section A.1.
The length (in bytes) of the data to be written. This byte value is
Data Length (Integer) encoded into an ASL integer as described in section A.1.
The data to be written. This byte, word, or block data is encoded into
Data (Integer | Buffer) an ASL integer (byte/word) or buffer (block) as described in section
A.1 — where the data type depends on the protocol being used.
Output Status Code (Integer) The return status code. This byte value is encoded into an ASL
Argument(s): 9 integer as described in section A.4.
Notes: This control method is used to implement the write quick, send byte, write byte, write word, and write
block protocols. See section 3.4 for additional details on this control method’s implementation.

3.3.4 SMBus Data Transfer (_SBT)

Description: Performs data transfers to/from a device residing on an SMBus segment.

Input The bus protocol to use during an SMBus request. This byte value is
Argument(s): Protocol Value (Integer) encoded into an ASL integer as described in section A.3.

The slave address of the target device. This byte value is encoded
into an ASL integer as described in section A.2.

The length (in bytes) of the data to be written. This byte value is
encoded into an ASL integer as described in section A.1.

Slave Address (Integer)

Data Length (Integer)

The data to be written. This word or block data is encoded into an
Data (Integer | Buffer) ASL integer (word) or buffer (block) as described in section A.1 —
where the data type depends on the protocol used.

Output Status Code (Integer) The return status code. This byte value is encoded into an ASL
Argument(s): 9 integer as described in section A.4.
The length (in bytes) of the data read from the device. This byte value
Data Length (Integer) is encoded into an ASL integer as described in section A.1.
The data read from the device. This word or block data is encoded
Data (Integer | Buffer) into an ASL integer (word) or buffer (block) as described in section
A.1 — where the data type depends on the protocol used.
Notes: This control method is used to implement the process call protocol. See section 3.4 for additional details

on this control method’s implementation.

Page 9

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3.3.5 SMBus Alert Information (_SBA)

Description: Returns information on an SMBus alert.
Input
< >
Argument(s): none
Output The return status code. This byte value is encoded into an ASL
Argument(s): integer as described in section A.4.

Valid status codes for this control method are:

0x00 — Indicates and outstanding alert was active and the alert
Status Code (Integer) information was retrieved successfully.

0x01 - Indicates that there were no outstanding alerts.

0x07 — Indicates a general failure.
Note that all other output argument fields should be set to 0 (zero)
whenever a status code of 0x01 or Ox07 is returned.

The slave address that generated this alert. This byte value is

Slave Address (Integer) encoded into an ASL integer as described in section A.2.

The data length is a byte value encoded in an ASL integer as
Data Length (Integer) described in section A.1. This field must be 0 (zero) for alerts that do
not return data (e.g. devices using the SMBALERT# line).

The data field consists of word data encoded in an ASL integer as
Data (Integer) described in section A.1. This field must be O (zero) for alerts that do
not return data (e.g. devices using the SMBALERT# line).

Notes: This control method is used to surface SMBus alerts. It may be polled (called repeatedly at some
predefined interval) by upper-level software for segments that don’t support ACPI-visible asynchronous
alert notifications.

3.4 Protocol Mappings

This section describes the mapping between the SMBus command protocols and the input/output arguments values
for the read (_SBR), write (_SBW, and data transfer (_SBT) control methods.

3.4.1 _SBR Protocols

Table 1 shows the mapping between the SMBus ‘read’ protocols and the _SBR control method. Read protocols
include read quick, receive byte, and read byte/word/block.

Table 1: _SBR Protocol Mapping

Input Arguments Return Arguments
e Protocol Slave Command Status Data Data
Value Address Code Code Length

Read Quick 0x03 0 0 0
Receive Byte 0x05

(with PEC) 0x85 0 1 Byte
Read Byte 0x07

(with PEC) 0x87 Byte Byte 1 Byte
Read Word 0x09

(with PEC) 0x89 Byte 2 Word
Read Block 0x0B

(with PEC) 0x8B 0-32 Buffer

Page 10

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3.4.2 _SBW Protocols

Table 2 shows the mapping between the SMBus “‘write’ protocols and the _SBWcontrol method. Write protocols
include write quick, send byte, and write byte/word/block.

Table 2: _SBW Protocol Mapping

Input Arguments Return Arguments
Protocol
Protocol Slave Data Status
Value Address S Length Bad Code
Write Quick 0x02 0
Send Byte 0x04 0 0
(with PEC) 0x84
Write Byte 0x06
(with PEC) 0x86 Byte . 1 Byte Byte
e

Write Word 0x08 y 5 Word
(with PEC) 0x88
Write Block 0x0A
(with PEC) OX8A 1-32 Buffer

3.4.3 _SBT Protocols

Table 3 shows the mapping between the SMBus “data transfer’ protocols and the _SBT control method. The only
data transfer protocol currently defined is process call.

Table 3: _SBT Protocol Mapping

Input Arguments Return Arguments
Protocol
Protocol Slave Data
value Address Length Data Status Code Data Length Data
Process Call 0x0C
(with PEC) OX8C Byte 2 Word Byte 2 Word

Page 11

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3.5 Data Structures

3.5.1 SMB_INFO

This data structure specifies the general characteristics of an SMBus CMI object.

Offset Name Length Value Description
SMB INEO This field specifies the version of the SMB_INFO structure. The
0x00 Structure BYTE ox10 major version is specified in the high nibble, the minor version in
Version the low nibble. For example, the value 0x10 identifies the interface
defined in version 1.0 of this specification.
This field specifies the version of the SMBus Specification that the
SMBus SMBus hardware (represented by this object) is compliant with.
0x01 Specification BYTE Varies The major version is specified in the high nibble, the minor version
Version in the low nibble. For example, the value 0x10 indicates that the
SMBus host controller is compliant with SMBus version 1.0.
Segment e s . _ .
OX02 Hardware BYTE Bit Eield This field specifies the basic hardware capabilities of this SMBus
o segment. See 3.5.1.1.
Capability
This field specifies the polling interval in seconds for segments that
need to be polled in order for higher level software to detect SMBus
0xX03 Alert Polling BYTE Varies alerts. A zero (0) indicates that the segment does not require
Interval polling because it either does not have devices that produce alerts
or the host controller is capable of generating ACPI-visible
asynchronous notifications (e.g. SCI).
0x04 Device Count BYTE Varies ;'nzynumber (n) of SMB_DEVI CE elements existing in the property
0x05 + . . . An array of 18-byte SMB_DEVI CE elements describing the fixed-
(n-1) * 18 Device Array Varies Varies address devices connected to this SMBus segment. See 3.5.2.

The following is a ‘C’-style definition of the SMB_| NFOstructure.
#defi ne ANYSI ZE_ARRAY 1

struct SMB_I NFO

{

BYTE SMBI nf oSt ruct ur eVer si on;

BYTE SMBusSpeci fi cati onVersi on;

BYTE Har dwar eCapabi | ity;

BYTE Al ertPol linglnterval;
BYTE Devi ceCount ;
SMB_DEVI CE Devi ceArray[ANYSI ZE_ARRAY] ;

}s

See section 3.5.2 for details concerning the SMB_DEVI CE structure. The use of the ANYSI ZE_ARRAY is simply
for ‘C’ syntactical correctness.

3.5.11

Segment Hardware Capability

This 8-bit value specifies the hardware capabilities of this SMBus segment. Possible values for this bit field are
defined below. A set bit (1) indicates that the segment supports the associated hardware capability, while a cleared

bit (0) indicates that the capability is not supported.

Bits Name Description
Bt 0 Segment supports This bit indicates whether this SMBus segment supports packet error code (PEC)
Packet Error Checking? | as defined in the SMBus v1.1 specification.
Bit 1 Segment may contain This bit indicates whether this SMBus segment may contain devices which need
ARP devices? Address Resolution Protocol (ARP) to be run in order to assign slave addresses.
Bits 2:7 <Reserved> Cleared (0).

Page 12

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3.5.2 SMB_DEVICE
The SMB_DEVI CE structure is used to specify details of each fixed-address device attached to a SMBus segment.

Offset Name Length Value Description
The 7-bit SMBus slave address of the device. Note that the
0x00 Slave Address BYTE Varies address is specified using bits 0:6 of this byte field (non-shifted).
See section A.2.
0x01 <Reserved> BYTE 0x00 Cleared (0).

This 16-byte (128-bit) value specifies the unique device ID for this

0x02 Device UDID BYTE Bit Field SMBUS device. See 3.5.2 1.

The following is a ‘C’-style definition of the SMB_DEVI CE structure.
struct SMB_DEVI CE
BYTE S| aveAddr ess;

BYTE Reserved,;
SMB_UDI D Devi ceUDI D;

}
3.5.21 SMB_UDID
Offset Name Length Value Description
Device This field specifies the hardware capabilities of this SMBus device
0x00 Hardware BYTE Varies '
o See 3.5.2.2.
Capabilities
Version/ . This field specifies the UDID version and silicon revision ID for this
Ox01 Revision BYTE Varies SMBus device. See 3.5.2.3.
0X02 Vendor ID WORD Varies Th|s_ field specifies the device manufacturer’s vendor ID as
assigned by the SBS-IF.
0x04 Device ID WORD Varies This field specifies the device ID assigned by the device
manufacturer.
0x06 Interface WORD Varies This field specifies the SMBus version for this device. See 3.5.2.4.
This field specifies the subsystem interface as assigned by the
SBS-IF. This field, in combination with the Subsystem Device ID
Subsystem . can be used to identify a company, organization or industry group
0x08 Vendor ID WORD Varies that has defined a common device interface specification. If no
subsystem interface is defined this field must be zero (0) and the
Subsystem Device ID must also be zero (0).
This field specifies a particular interface, implementation, or device
Subsystem . as defined by the subsystem vendor or industry group. If the
Ox0A Device ID WORD Varies Subsystem Vendor ID field is zero (0) this field must also be zero
(0).
0x00
0x0C | <Reserved> | BYTE[4] 300 | Reserved. Must be zero (0x00000000).
0x00

Page 13

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

The following is a ‘C’-style definition of the SMB_UDI D structure.
struct SMB_UDI D

{
BYTE Devi ceCapability;
BYTE UDI Dver si onSi Revi si on;
WORD Vendor | D
WORD Devi cel D
WORD Interface;
WORD Subsyst enVendor | D;
WORD Subsystenl D,
BYTE Reserved[4];
}

The byte encoding of WORD values in an ASL buffer is geared towards ASL readability. Consider the following
ASL which describes an example SMB_UDID structure:

Buf fer ()
{
0x00, /1 Device capabilities
0x00, // UDID version/Silicon revision ID
0x80, 0x86, // Vendor | D 0x8086
0x00, 0xO01, // Device | D 0x0001
0x00, 0x00, // SMBus interface
0x00, 0x00, /1 Subsystem Vendor | D 0x0000
0x00, 0x00, /1 Subsystem | D 0x0000
0x00, 0x00, 0x00, 0x00 /'l reserved
}

Note the byte ordering of the WORD values. This ordering is expected by the device driver when interfacing to the
SMBus control methods. Also note that all structures defined in this specification assume single-byte alignment [e.g.
#pragma pack(1)].

3.5.2.2 Device Hardware Capability

This 8-bit value specifies the hardware capabilities of this SMBus device. Possible values for this bit field are
defined below. A set bit (1) indicates that the device supports the associated hardware capability, while a cleared bit
(0) indicates that the capability is not supported.

Bits Name Description
Device supports This bit indicates whether this device supports packet error code (PEC) on all
Bit O Packet Error commands supported by the device. If this bit is cleared (0) then the ability of the
Checking? device to support PEC is unknown.
Bits 1:7 <Reserved> Cleared (0)

Page 14

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

3.5.2.3 Version/Revision

This 8-bit value specifies the version, revision and hardware capabilities of this SMBus device. Possible values for
this bit field are defined below.

Bits Name Description
Bits 0:2 Silicon Revision ID | These bits designate the silicon revision level for this SMBus device.
Bits 3'5 SMBus_UDID These bits design_ate the SMBus UDID version for this device. For this version of
Version the UDID these bits must be cleared (0).
Bit 6:7 <Reserved> Cleared (0).

3.5.2.4 Interface

This 16-bit value specifies the SMBus version for this device.

Bits Name Description
These bits define the SMBus version for this device. Possible values are 0000b
Bits 0:3 SMBus Version for SMBus version 1.0 and 0001b for SMBus version 1.1. All other values are
reserved.
Bits 4:15 <Reserved> Cleared (0).

3.5.25 SMB_UDID Considerations

For most devices the values for the SMB_UDI D fields are straightforward. However for certain devices the proper
values are not obvious. This section describes how these should be handled.

The Subsystem Vendor ID for the SBS-IF industry group is 0x5342. Smart battery system devices that conform to
the Smart Battery Data Specification v1.0 or v1.1 as published by the Smart Battery System Implementers Forum
must have the ‘Subsystem Vendor ID’ field set to 0x5342 and the ‘Subsystem Device ID” set to 0x5309 for smart
battery chargers, 0x530A for smart battery selectors and 0x530B for smart battery devices.

Cases are known to exist where a fixed slave address may have one of several SMBus devices attached or none at all
at any point in time. For example some mobile platforms have common docking station models containing
additional SMBus devices (i.e. several docks, each with different combinations of devices) so the addresses must be
reserved. If the device is not present or it’s characteristics not known then the entire 16 bytes of the UDID structure
must be set to all zeros (16 bytes of 0x00).

Page 15

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Appendix A - Data Types

A.1 Data Format

SMBus protocols require data to be transferred in byte, word, or block format — where ASL supports integer, string,
and buffer data types. Figure 3 illustrates how data is mapped between these types. Note that byte and word SMBus
data is mapped to the integer ASL type, and block SMBus data is mapped to the buffer ASL type.

Figure 3: Data Format

Byte Data
E% Bits 7:0 = Data %E
31:8 = Reserved (0) [7]6|s5[afa]2]1]o0]|— integer
i Word Data ;
% Bits 15:8 = High Byte H% Bits 7:0 = Low Byte %
31:16=Reserved (0) [15|14 13|12 [11f0] o[8[76 |5]af[3]2]1]0[— mteger
Block Data
Array of 32 Bytes
[of1]2]3]a]5] [30 [31 | Buffer

A.2 Device Addressing

Slave addresses are presented in this specification using an integer-encoded, 7-bit, non-shifted notation, as illustrated
in Figure 4. For example, the slave address of the Smart Battery Selector device would be specified as 0X0A
(1010b), not 0x14 (10100b) as might be found in other documents.

Figure 4: Slave Address Encoding

1&—Bits 6:0 = Slave Address —> 1

31:7 = Reserved (0) [6[5]a]3|[2]1]o0]— integer

A.3 Bus Protocols

SMBus protocols are presented in this specification using an integer-encoded, 8-bit notation, as illustrated in Figure
5. Note that bit 7 of the protocol value is used to indicate whether packet error checking should be employed. A
value of 1 (one) in this bit indicates that PEC format should be used for the specified protocol, and a value of 0
(zero) indicates the standard (non-PEC) format should be used.

Page 16

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Figure 5: Protocol Encoding

Bit 7 = Packet Error Checking

N
S
N

&— Bits 6:0 = Protocol —>

| 31:8 = Reserved (0)

[7

6|s[afs]2]1]o

— Integer

Table 4 lists the bus protocols defined in the SMBus Specification and their associated value. Note that the values
listed match those defined for the EC SMBus in the ACPI specification.

Table 4: Protocol Values

Value Description
0x00, 0x01 <Reserved>
0x02 Write Quick
0x03 Read Quick
0x04 Send Byte
0x05 Receive Byte
0x06 Write Byte
0x07 Read Byte
0x08 Write Word
0x09 Read Word
O0x0A Write Block
0x0B Read Block
0x0C Process Call
0x0D — OxFF <Reserved>

For example, the protocol value of 0x09 would be used to communicate to a device that supported the standard read
word protocol. If this device supports packet error checking for this protocol, a value of 0x89 could also be used.

A.4 Status Codes

Status codes are presented in this specification using an integer-encoded, 8-bit notation, as illustrated in Figure 6.

Figure 6: Status Code Encoding

1&—— Bits 7:0 = Status Code ——>

| 31:8 = Reserved (0)

[7]6]5]a[3]2]1]0] mteger

Table 5 lists the success/failure codes defined by this specification. The values listed match those defined for the EC
SMBus in the ACPI Specification, with an additional status code to indicate a PEC error (Ox1F).

Page 17

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Table 5:

Status Code Values

Value

Description

0x00

OK (Success)

0x07

Unknown Failure

0x10

Address Not Acknowledged

O0x11

Device Error

0x12

Command Access Denied

0x13

Unknown Error

0x17

Device Access Denied

0x18

Timeout

0x19

Unsupported Protocol

Ox1A

Bus Busy

Ox1F

PEC (CRC-8) Error

All other
values

<Reserved>

For example, an SMBus control method would return the status value 0x19 (unsupported protocol) for requests
made for protocols not supported by the SMBus segment or slave device.

Page 18

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Appendix B - Sample ASL

B.1 Mobile Example

The sample ASL presented in this section was tested on an Intel Mobile Reference Platform. This platform includes
an ACPI-compliant embedded controller (EC) with support for two SMBus segments: one at offset 0x04 in EC-space
and one at offset 0x30. Devices connected to the first segment include the Smart Battery Subsystem (SBS) (charger,
selector, and battery devices). Devices connected the second segment include a Maxim 1617 (local/remote thermal
sensor). Figure 7 illustrates a logical view of this SMBus configuration.

Figure 7: Mobile Example System

Smart Battery

000000000 Selector [0x0A]
o o | | | o
o 'SMBO' [T | |
o o Smart Battery Smart Battery
O EC @) Charger [0x09] Devices [0x0B]
¢ 0
g e
o SMB1 } l l l -
O0000000O0 I I

Maxim 1617

[Ox4]

Information on the embedded controller is available in chapter 13 of the ACPI specification:

http://www.teleport.com/~acpi/

Information on the Smart Battery Subsystem is available at:
http://www.sbs-forum.org/

Information on the Maxim 1617 is available at:
http://209.1.238.250/arpdf/1855.pdf

B.1.1 ASL Overview

The mobile sample ASL presented in section B.1.1 includes two SMBus CMI objects: SMBO represents the first
SMBus segment and SVB1 represents the second. Each of these ACPI devices is assigned a _HI D value of

* SMBUSO1’ and unique _Ul D values to allow enumeration of these SMBus CMI objects by the OS and higher-
level software.

A mutex is declared for each device (SBXO0, SBX1) to ensure transactional synchronization. This guarantees that a
request that is currently being executed will complete before another (overlapping) request is started. Note that
synchronization is only required within a segment.

The EC exposes a set of registers for each SMBus host controller. These registers are accessed via ACPI’s
Oper at i onRegi on primitive. SMBO is located at an offset of 0x04 in EC-space, while S\VBL1 is located at offset
0x30.

Page 19

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

The _SBI control method is required and thus was implemented for each segment. Although not required, all of the
‘read’ and “write” protocols were implemented in the _SBRand _ SBWecontrol methods due to the simplicity of the
EC-SMBus hardware interface. The _SBA control method was implemented for both segments, as the devices on
each are capable of generating SMBus alerts.

Note that testing was performed on only the read/write byte, read/write word, and read block protocols —
corresponding to the capabilities of the devices on these SMBus segments.

Since this platform includes an ACPI-compliant EC, the sample ASL presented in section B.1.1 can be used with
minimal modifications on other EC-based platforms. Items that would need to be changed are the offset of the
SMBus registers in EC-space and the information returned in the _SBI control method (e.g. device list).

Note that the _GLK (global lock) method, as defined in section 6.5.6 of the ACPI Specification (1.0b) should not be
defined for devices nested in SMBus CMI devices (such as smart battery). Since the sample ASL's Fi el d
definitions' lock rule is set to "Lock", the global lock will automatically be acquired during the ASL's field accesses,
and therefore _ GLK should not be used.

B.1.2 EC-SMBus Sample ASL

IR N N NN NN NNy
/] Devi ce: SMBO
L e e R
/1 Description: The first EC SMBus segnent (includes the SBS).
IR N NN NN NN
Devi ce(SMBO)
{

Nane(_HI D, "SMBUS01")

Nane(_Ul D, 0)

Mut ex(SBX0, 0) /1 SMBus transactional synchronization.

/1

/1 Smart Battery Subsystem
A R TP
Devi ce(SBS0)

{

Nane(_HI D, " ACPI 0002") /1 HDfor Snart Battery
Nanme(_SBS, 0x2) /1 2 batteries in system

/1

/1 Operati onRegi on:

TR

/1 This SMBus resides at offset 0x04 in EC space. See the ACPI

/1 Specification for infornmation on the EC SMBus register interface.

/1
Oper at i onRegi on(SMBO, EnbeddedCont r ol , 0x04, 0x40)
Fi el d(SMBO, Byt eAcc, Lock, Preserve) /1 _GLK not used in SBS because ‘Lock’ is here
{

PRTC, 8, /1 Protocol

STS, 8, /1 Status

ADDR, 8, /1 Address

C\VD, 8, /1 Comand

DATA, 256, // SMBus Data Bytes (Bl ock)

BCNT, 8, /1 Bl ock Count

AADR, 8, /1 Al arm Addr ess

ADBO, 8, /1 AlarmData Byte 0O

ADBL1, 8 /1 Alarm Data Byte 1

}
Fi el d(SMBO, Byt eAcc, Lock, Preserve)

O fset(4), /1 Move to byte offset 4 (beginning of data).
DATO, 8, /1 8-bit data register for byte/word access.
DAT1, 8 /1 8-bit data register for word access.

}

/1

/1 _SBI (SMBus Infornation):

Page 20

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

e

/1 Returns a SMB_I NFO structure describing the properties of this
/1 SMBus segnent.

/1

/1 Paraneters:

/1 <none>

/1

/1 Return Val ue (Package):

/1 (0) = SMBus Control Method Interface (CM) version (Integer)
I (1) = SMB_I NFO data structure (Buffer)

/1

Met hod(_SBI)
{

/1

/1 LocalO is the return package. The CM version is set
/1 to vl1l.0 (0x10).

/1

St or e(Package(2) { 0x10, 0x00}, Local 0)

St ore(Buffer()
{

0x10, /1 SMB_I NFO structure Version (vl1.0)

0x10, /1 SMBus Specification Version (vl1.0)

0x00, /1 Segnent Hardware Capability

0x00, /1 Alert Polling Interval (Supports Async Notifications)
0x03, /1 Device Count

0x09, 0x00, /1 SMBus Device #1: SBS Charger

0x00, 0x00, 0x80, 0x86, // SMB_UDID... (Vendor IDis a placehol der)

0x00, 0x01, 0x00, 0xO00,
0x53, 0x42, 0x53, 0x09, // Confornms to SBS-IF Smart Battery Charger spec
0x00, 0x00, 0x00, 0x00,
0x0A, 0x00, /1 SMBus Device #2: SBS Sel ector
0x00, 0x00, 0x80, 0x86, // SMB_UDID... (Vendor IDis a placehol der)
0x00, 0x02, 0x00, 0x00,
0x53, 0x42, 0x53, OxO0A, // Confornms to SBS-IF Smart Battery Sel ector spec
0x00, 0x00, 0x00, 0x00,
0x0B, 0x00, /1 SMBus Device #3: SBS Battery Devices
0x00, 0x00, 0x80, 0x86, // SMB_UDID... (Vendor IDis a placehol der)
0x00, 0x03, 0x00, 0xO00,
0x53, 0x42, 0x53, 0x0B, // Confornms to SBS-IF Smart Battery Data spec
0x00, 0x00, 0x00, 0x00

}, Index(Local 0, 1))

Ret ur n(Local 0)

} /1 _SBI

/1

// SWIC (Wait for Transaction Conplete):
e
/1 Wait until the previous SMBus transaction has conpl eted.
/1

/1 Paraneters:

/1 Arg0 = Timeout Value (in ns)

/1

/1 Return Val ue:

/1 0x00 = XK

/1 0x07 = Unknown Failure

/1 0x10 = Address Not Acknow edged
/1 0x11 = Device Error

/1 0x12 = Command Access Deni ed

/1 0x13 = Unknown Error

/1 0x17 = Devi ce Access Deni ed

/1l 0x18 = Ti nmeout

/1 0x19 = Unsupported Protocol

/1 Ox1A = Bus Busy

/1 Ox1F = PEC (CRC-8) Error

/1

Met hod(SWIC, 1)

Store(Arg0, Local 0)
St or e(0x07, Local 2)

/1

/1 The previous comand has conpl eted when the protocol
/1 register is equal to O (zero). Wit <tineout> ns
/1 (in 10nms chunks) for this to occur.

/1

Page 21

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Store(1, Local 1)

Whi

}
Ret

| e(LEqual (Local 1, 1))
| f (LEqual (PRTC, 0))

And(STS, Ox1F, Local 2) /
St ore(0x00, Local 1) /

El se
{

| eep 10ms and | oop agai n.
(LLess(Local 0, 10))

St ore(0x18, Local 2)
St or e(0x00, Local 1)

~
~

El se

Sl eep(10)

/
/

Transaction isn't conplete.
s

Store status code.
Term nate | oop.

Check for tinmeout, and if not,

ERROR: Ti meout occurred.
Term nate | oop.

Subt ract (Local 0, 10, Local 0)

urn(Local 2)

} /1 Method(SWIC)

/1
/1

{

Local 0 is the return package. The status code is defaulted

Local 0)

_SBR (SMBus Read):

Par anet ers:

Ar g0 = Protocol (Integer)

Argl = Slave Address (Integer)

Arg2 = Command (| nt eger)

Return Val ue (Package):

(0) = Status (Integer)

(1) = Data Length (Integer)

(2) = Data (Integer | Buffer)
Met hod(_SBR, 3)

/1

/1

/1 to 'unknown failure' (0x07).

/1

St or e(Package(3) {0x07, 0x00, 0x00},

/1

/1 Make sure the protocol is valid, if not return the

/1

/1

"invalid protocol' status code. Note that this segnent
/1 does not support packet error checking.

| f (LNot Equal (Arg0, 0x03))

/1

| f (LNot Equal (Arg0, 0x05))
I f (LNot Equal (Arg0, 0x07))
I f (LNot Equal (Arg0, 0x09))

/1 Read Quick
/'l Receive Byte
/1 Read Byte
/] Read Word

| f (LNot Equal (Ar g0, 0xO0B)) /1 Read Bl ock
{

St ore(0x19, | ndex(Local 0, 0))

Ret ur n(Local 0)

Page 22

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

/1 Acquire the SMBus nutex to ensure transactional synchronization.
/1
| f (LEqual (Acqui re(SBX0, OxFFFF), 0))
{
/1
/1 Make sure the SMBus is ready for this transaction. |f not,

/1 return a 'bus busy' error code. Note that 'we' should be
/1 the only consuner. ..

/1

| f (LNot Equal (PRTC, 0))

St or e(0x1A, | ndex(Local 0, 0)) /1 ERROR Bus is busy.

El se

{

/1 Initiate the transaction by witing the slave address,
/1 command, and protocol registers. Note that the conmand
/! code is always witten, even if the protocol (e.g. 'read

/1 quick') doesn't require it (it will be ignored). Note also
/1 that the “Read Bl ock" always return 32-byte buffer regardl ess

/1 of the actual block length. This is not a requirenent but
/1 is inplementation specific to this sanple ASL.

Store(ShiftLeft(Argl, 1), ADDR)
Store(Arg2, CMVD)
Store(Arg0, PRTQO)

/1
/1 Wit for conpletion. Save the status code, data size,

/1 and data into the return package (if required by the protocol).

/1
St or e(SWIC(1000), | ndex(Local 0, 0))

I f (LEqual (Arg0, 0x05)) /1 Receive Byte
{

Store(1, |ndex(LocalO, 1))
St or e(DATO, | ndex(Local 0, 2))

}
| f (LEqual (Arg0, 0x07)) /1 Read Byte

Store(1, |ndex(Local0, 1))
St or e(DATO, | ndex(Local 0, 2))

}
| f (LEqual (Arg0, 0x09)) /1 Read Word
{
Store(2, |ndex(LocalO, 1))
St or e(DAT1, Local 1)
ShiftLeft(Local 1, 8, Locall)
Add(Local 1, DATO, Local 1)
Store(Local 1, |ndex(Local 0, 2))
}
| f (LEqual (Arg0, 0x0B)) /1 Read Bl ock

St or e(BCNT, | ndex(Local 0, 1))
St or e(DATA, | ndex(Local 0, 2))

}
Rel ease(SBX0)

Ret ur n(Local 0)

} 11 _SBR()

/1

/] _SBW (SMBus Wite):

A R

/1

/| Paraneters:

/1 Argo = Protocol Value (Integer)
/1 Argl = Sl ave Address (Integer)
/1l Arg2 = Command Code (I nteger)
/1 Arg3 = Data Length (Integer)
/Il Arg4 = Data (Integer | Buffer)
/1

Page 23

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

/1 Return Val ue (Package):

/1 (0) = Status (Integer)
/1
Met hod(_SBW 5)
{
/1

/1 LocalO is the return package. The status code is defaulted
/1 to 'unknown failure (0x07).

/1

St or e(Package(1) { 0x07}, Local 0)

/1
/1 Make sure the protocol is valid, if not return the
/1 "invalid protocol' status code. Note that this segnent
/1 does not support packet error checking or the 'process call’
/'l protocol .
/1
| f (LNot Equal (Arg0, 0x02)) /1l Wite Quick
{
| f (LNot Equal (Arg0, 0x04)) /1 Send Byte
| f (LNot Equal (Ar g0, 0x06)) /1 Wite Byte
I f (LNot Equal (Arg0, 0x08)) /1 Wite Wrd
I f (LNot Equal (Arg0, O0xO0A)) /1 Wite Block
{
St ore(0x19, | ndex(Local 0, 0))
Ret ur n(Local 0)
}
}
}
}
/1
/1 Acquire the SMBus nutex to ensure transactional synchronization.
/1
| f (LEqual (Acqui re(SBX0, OxFFFF), 0))
{
/1
/1 Make sure the SMBus is ready for this transaction. |f not,

/1 return a 'bus busy' error code. Note that 'we' should be

/1 the only consuner. ..
/1
| f (LNot Equal (PRTC, 0))

St or e(0x1A, Local 0)

El se

{

/1 Initiate the transaction by witing the slave address,
/1 command, and protocol registers. Note that the conmand

/1 code and data length are always witten, even if the
/1 protocol (e.g. 'wite quick') doesn't require it (it
/1 will be ignored).

/1

Store(ShiftLeft(Argl, 1), ADDR)

Store(Arg2, CMD)

St ore(Arg3, BCNT)

I f (LEqual (Arg0, 0x06)) /Il Wite Byte
{ St ore(Arg4, DATO)
I}f(LEquaI(ArgO, 0x08)) /1 Wite Wrd
And(Ar g4, OxOOFF, DATO)
Shift Ri ght (Arg4, 8, DAT1)
I}f(LEquaI (Arg0, 0x0A)) /1 Wite Block
St ore(Arg4, DATA)

[N

Page 24

Store(Arg0, PRTQO)

/1

/1 Wit for conpletion.
/1

St or e(SWIC(1000), Local 0)

}
Rel ease(SBX0)

Ret ur n(Local 0)

} 11 _SBW)
/1
/1 _SBA (SMBus Alert Infornation):
N
/1
/| Paraneters:
/1 <none>
/1
/1 Return Val ue (Package):
/1 (0) = Status Code (Integer) -> {0x00=Success | 0x01=No Active Alert
/1 | 0x07=Unknown Fai l ure}
11 (1) = Sl ave Address (I nteger)
11 (2) = Data Length (Integer)
11 (3) = Data (I nteger)
/1
Met hod(_SBA, 0)
{
/1
/1 LocalO is the return package. The status code is defaulted
/1 to 'unknown failure' (0x07).
/1
St or e(Package(4) { 0x07, 0x00, 0x00, 0x00}, Local 0)
/1
/1 Acquire the SMBus nutex to ensure transactional synchronization.
/1
| f (LEqual (Acqui re(SBX0, OxFFFF), 0))
{
/1
/1 Make sure there's an active (non-consuned) al arm by
/'l checking bit 6 of the status register. |If not, the
/1 return package already indicates that there isn't an
// active alarm
/1
I f (And(STS, 0x40))
{
St or e(0x00, | ndex(Local 0, 0)) /1 Success
Shift Ri ght (AADR, 1, |ndex(Local 0, 1)) /1 Slave Address
Store(2, Index(Local0, 2)) /1 Data Length
Store(ShiftlLeft(ADBL, 8), Locall) /'l Data
Add(Local 1, ADBO, Local 1)
Store(Local 1, |ndex(Local 0, 3))
/1
// Cdear the alarmby resetting the status register.
/1
St or e(0x00, STS)
}
El se
St or e(0x01, | ndex(Local 0, 0)) // Status = No Alert
Rel ease(SBX0)
}
Ret ur n(Local 0)
} 11 _SBA()

} /1 Device(SMBO)

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Page 25

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Iy N NN NN NNy
/1 Device: SMVB1

R e e T
/1 Description: The second EC SMBus segnent (includes the Maxi m 1617).
Iy N NN NN NNy
Devi ce(SMB1)

Name(_HI D, "SMBUSO1")
Name(_UI D, 1)

Mut ex(SBX1, 0) /1 SMBus transactional synchronization.
/1

/1 OperationRegi on:

N T

/1 This SMBus resides at offset 0x30 in EC space. See the ACPI

/1 Specification for information on the EC-SMBus register interface.
/1

Oper at i onRegi on(SMB1, EnbeddedCont r ol , 0x30, 0x40)

Fi el d(SMB1, Byt eAcc, Lock, Preserve)

{
PRTC, 8, /1 Protocol
STS, 8, /1 Status
ADDR, 8, /1 Address
C\VD, 8, /1 Command
DATA, 256, /1 SMBus Data Bytes (Bl ock)
BCNT, 8, /1 Bl ock Count
AADR, 8, /1 Al arm Address
ADBO, 8, /1 Alarm Data Byte 0
ADB1, 8 /1 AlarmData Byte 1

}
Fi el d(SMB1, Byt eAcc, Lock, Preserve)

O fset(4), /1 Move to byte offset 4 (beginning of data).
DATO, 8, /1 8-bit data register for byte/word access.
DAT1, 8 /1 8-bit data register for word access.

}

/1

/1 _SBI (SMBus Infornation):

N R R R R

/1l Returns a SMB_ | NFO structure describing the properties of this
/1 SMBus segnent.

/1 Paraneters:
/'l <none>

/1

/1 Return Val ue (Package):

/1 (0) = SMBus Control Method Interface (CM) version (Integer)
I (1) = SMB_I NFO data structure (Buffer)

/1

Met hod(_SBI)
{

/1

/1 LocalO is the return package. The CM version is set
/1 to vl1l.0 (0x10).

/1

St or e(Package(2) {0x10, 0x00}, Local 0)

St ore(Buffer()
{

0x10, /1 SMB_INFO structure Version (vl1.0)

0x10, /1 SMBus Specification Version (vl1.0)

0x00, /1 Segnent Hardware Capability

0x0A, /1 Alert Polling Interval (poll every 10 seconds)
0x01, /1 Device Count

0x09, 0x00, /1 SMBus Device #1: Maxi m 1617

0x00, 0x00, 0x80, 0x86, // SMB_UDID... (Vendor IDis a placehol der)

0x00, 0x01, 0x00, 0x00, // (Device IDis a placehol der)

0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
}, Index(Local 0, 1))
Ret ur n(Local 0)
} /1 _SBI

Page 26

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

/[l SWIC (Wait for Transaction Conplete):

R
/1 Wait until the previous SMBus transaction has conpl eted.
/1

/1 Paraneters:

/1 Arg0 = Timeout Value (in ns)

/1

/! Return Val ue:

/1 0x00 = X

/1 0x07 = Unknown Failure

/1 0x10 = Address Not Acknow edged
/1 0x11 = Device Error

/1 0x12 = Command Access Deni ed

/1 0x13 = Unknown Error

/1 0x17 = Devi ce Access Deni ed

/1 0x18 = Ti neout

/1 0x19 = Unsupported Protocol

/1 Ox1A = Bus Busy

/Il Ox1F = PEC (CRC-8) Error

/1

Met hod(SWIC, 1)

{

Store(Arg0, Local 0)
St or e(0x07, Local 2)

/1

/1 The previous comand has conpl eted when the protocol
/1 register is equal to O (zero). Wit <tineout> ns
/1 (in 10nms chunks) for this to occur.

/1

Store(1, Locall)

Wi | e(LEqual (Local 1, 1))

| f (LEqual (PRTC, 0))

And(STS, Ox1F, Local 2) /1 Store status code.
St ore(0x00, Local 1) /1 Term nate | oop.
El se
{
/1
/1 Transaction isn't conplete. Check for tineout, and if not,
/1 sleep 10ms and | oop agai n.
/1
I f(LLess(Local 0, 10))
{
St ore(0x18, Local 2) /1 ERROR Tineout occurred.
St or e(0x00, Local 1) /1 Term nate | oop.
El se
Sl eep(10)
Subt ract (Local 0, 10, Local 0)
}

}

Ret ur n(Local 2)
} /1 Method(SWIC)

/1

/1 _SBR (SMBus Read):

N e T

/1

/] Paraneters:

/1 Arg0 = Protocol (Integer)

/1 Argl = Slave Address (Integer)
/1 Arg2 = Command (| nt eger)

/1

/1 Return Val ue (Package):

/1 (0) = Status (Integer)

11 (1) = Data Length (Integer)
11 (2) = Data (Integer | Buffer)
/1

Met hod(_SBR, 3)

{

Page 27

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

/1

/1 LocalO is the return package. The status code is defaulted
/1 to 'unknown failure (0x07).

/1

St or e(Package(3) {0x07, 0x00, 0x00}, Local 0)

/1

/1 Make sure the protocol is valid, if not return the

/1 ‘invalid protocol' status code. Note that this segnent
/1 does not support packet error checking.

/1
I f (LNot Equal (Arg0, 0x03)) /1 Read Quick
| f (LNot Equal (Arg0, 0x05)) /'l Receive Byte
| f (LNot Equal (Arg0, 0x07)) /1 Read Byte
I f (LNot Equal (Arg0, 0x09)) /1 Read Word
| f (LNot Equal (Arg0, 0xO0B)) /1 Read Bl ock
{
St ore(0x19, | ndex(Local 0, 0))
Ret ur n(Local 0)
}
}
}
}
/1

/1 Acquire the SMBus nutex to ensure transactional synchronization.
/1

| f (LEqual (Acquire(SBX1, OxFFFF), 0))

{

/1

/1 Make sure the SMBus is ready for this transaction. |f not,
/1 return a 'bus busy' error code. Note that 'we' should be
/1 the only consuner. ..

/1

| f (LNot Equal (PRTC, 0))

St or e(0x1A, | ndex(Local 0, 0)) /1 ERROR Bus is busy.

El se

{

/1 Initiate the transaction by witing the slave address,

/1 command, and protocol registers. Note that the conmand

/1 code is always witten, even if the protocol (e.g. 'read

/1 quick') doesn't require it (it will be ignored). Note al so

/1 that the “Read Bl ock" always return 32-byte buffer regardl ess
/1 of the actual block length. This is not a requirenent but

/1 is inplementation specific to this sanple ASL.

Store(ShiftLeft(Argl, 1), ADDR)
Store(Arg2, CMVD)
Store(Arg0, PRTCO)

/1

/1 Wit for conpletion. Save the status code, data size,
/1 and data into the return package (if required by the
/1 protocol).

/1

St or e(SWIC(1000), | ndex(Local 0, 0))

| f (LEqual (Arg0, 0x05)) /1 Receive Byte

Store(1, |ndex(LocalO, 1))
St or e(DATO, | ndex(Local 0, 2))

}
I f (LEqual (Arg0, 0x07)) /1 Read Byte

Store(1, |ndex(LocalO, 1))
St or e(DATO, | ndex(Local 0, 2))

}
| f (LEqual (Arg0, 0x09)) /1 Read Word

Page 28

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Store(2, |ndex(Local0, 1))

St ore(DAT1, Local 1)
ShiftlLeft(Local 1, 8, Local 1)
Add(Local 1, DATO, Local 1)

St ore(Local 1, |ndex(Local 0, 2))

}
| f (LEqual (Arg0, 0xO0B)) /1 Read Bl ock
{

St or e(BCNT, | ndex(Local 0, 1))
St or e(DATA, | ndex(Local 0, 2))

}
Rel ease(SBX1)
}
Ret ur n(Local 0)
} 11 _SBR()
/1
/1 _SBW (SMBus Wite):
N T T
/1
/1 Paraneters:
/1 Arg0 = Protocol Value (Integer)
/1 Argl = Slave Address (Integer)
/1 Arg2 = Command Code (| nteger)
/1 Arg3 = Data Length (Integer)
/1 Arg4 = Data (Integer | Buffer)
/1
/1 Return Val ue (Package):
/1 (0) = Status (Integer)
/1

Met hod(_SBW 5)
{

/1

/1 LocalO is the return package. The status code is defaulted
/1 to 'unknown failure (0x07).

/1

St or e(Package(1) {0x07}, Local Q)

/1
/1 Make sure the protocol is valid, if not return the
/1 ‘invalid protocol' status code. Note that this segnent
/1 does not support packet error checking or the 'process call’
/1 protocol.
/1
| f (LNot Equal (Arg0, 0x02)) /1 Wite Quick
{
| f (LNot Equal (Arg0, 0x04)) /1 Send Byte
I f (LNot Equal (Arg0, 0x06)) /1 Wite Byte
I f (LNot Equal (Arg0, 0x08)) /1 Wite Wrd
I f (LNot Equal (Arg0, O0xO0A)) /1 Wite Block
{
St ore(0x19, | ndex(Local 0, 0))
Ret ur n(Local 0)
}
}
}
}
/1
/1 Acquire the SMBus nutex to ensure transactional synchronization.
/1
| f (LEqual (Acquire(SBX1, OxFFFF), 0))
{
/1
/1 Make sure the SMBus is ready for this transaction. |f not,

/1 return a 'bus busy' error code. Note that 'we' should be
/1 the only consumer. ..
/1

Page 29

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

| f (LNot Equal (PRTC, 0))

St ore(0x1A, Local 0)
}

El se

{

comand, and protocol registers. Note that the comand

code and data length are always witten, even if the
/'l protocol (e.g. 'wite quick') doesn't require it (it
/1 will be ignored).

/1
/1 Initiate the transaction by witing the slave address,
/1
/1

Store(ShiftLeft(Argl, 1), ADDR)

Store(Arg2, CMVD)

St ore(Arg3, BCNT)

| f (LEqual (Arg0, 0x06)) /1 Wite Byte
St ore(Arg4, DATO)

}

| f (LEqual (Arg0, 0x08)) /1 Wite Wrd

And(Ar g4, OxOOFF, DATO)
Shi ft R ght (Arg4, 8, DAT1)

}
| f (LEqual (Arg0, O0x0A)) /1 Wite Bl ock
St ore(Arg4, DATA)

St ore(Arg0, PRTC)

/1

/1 Wit for conpletion.
/1

St or e(SWIC(1000), Local 0)

}
Rel ease(SBX1)

}

Ret ur n(Local 0)
} /1 _SBW)
/1
/1 _SBA (SMBus Alert Infornation):
L T
/1

/'l Paraneters:
/!l <none>

/1

/1 Return Val ue (Package):

/1 (0) = Status Code (Integer) -> {0x00=Success | 0x01=No Active Alert | 0x07=Unknown
Fai | ure}

11 (1) = Slave Address (Integer)

11 (2) = Data Length (Integer)

11 (3) = Data (Integer)

/1

Met hod(_SBA, 0)
{

/1

/1 LocalO is the return package. The status code is defaulted
/1 to 'unknown failure' (0x07).

/1

St or e(Package(3) {0x07, 0x00, 0x00}, Local 0)

Acquire the SMBus nutex to ensure transactional synchronization.

—_—~—~

/
/
/
| f (LEqual (Acquire(SBX1, OxFFFF), 0))

{

Make sure there's an active (non-consuned) alarm by
checking bit 6 of the status register. |f not, the

return package already indicates that there isn't an
active alarm

~——
~——

Page 30

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

{ll‘(And(STS, 0x40))

{ St or e(0x00, | ndex(Local 0, 0)) /1 Status = Success
Shift Ri ght (AADR, 1, |ndex(Local 0, 1)) /1 Slave Address
Store(2, |ndex(Local0, 2)) /1 Data Length

Store(ShiftLeft(ADBL, 8), Locall) /1 Data
Add(Local 1, ADBO, Local 1)
Store(Local 1, |ndex(Local 0, 3))

/1
/1l Clear the alarmby resetting the status register.

/1
St or e(0x00, STS)

El se

St ore(0x01, | ndex(Local 0, 0)) /1l Status = No Alert
}

Rel ease(SBX1)
Ret ur n(Local 0)
} 11 _SBA()
} /1 Device(SMB1)

Page 31

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

B.2 Desktop Example

The sample ASL presented in this section was tested on an Intel desktop system. This platform uses the built-in
SMBus controller available on the PI1X4 chipset. Devices connect to this segment include the Heceta Il and Alert
on LAN manageability ASICs. Figure 8 illustrates a logical view of this SMBus configuration.

Figure 8: Desktop Example System

000000000
O O
O O
O e}
Heceta Il

© PliX4 © ASIC [0x2C]
@] @) | | |
Ol 'smBo °
o 0 | [
000000000 Alert On LAN

ASIC [0x2E]

Information on the PI1X4 ASIC is available at:
http://developer.intel.com/design/intarch/ DATASHTS/209562.htm

A functional overview of the Heceta Il is available at:
http://developer.intel.com/ial/wfm/wfm20/design/sensdt/HEC2FUNC.HTM

Information on the Alert on LAN ASIC is available at:
http://developer.intel.com/design/network/datashts/69281801.pdf

B.2.1 ASL Overview

The desktop sample ASL presented in section B.2.2 includes a single SMBus CMI object (SMBO) representing the
P11X4’s built-in SMBus host controller. This device is assigned a_HI Dvalue of * SMBUS01’ and unique _Ul D
value to allow enumeration by the OS and higher-level software.

As with the mobile example, a mutex is declared (SBXO0) to ensure transactional synchronization for accesses to this
segment. The P11X4 exposes a set of registers for the SMBus host controller at 0x7000 in system 10 space, which is
mapped using the Oper at i onRegi on primitive.

The _SBI control method is required and thus was implemented for the segment. Although not required, all of the
‘read’ and “write” protocols (except read/write block) were implemented in the _ SBRand _ SBWcontrol methods due
to the simplicity of the P11X4 SMBus hardware interface. The _SBA control method was not implemented, as
neither the Heceta 11 nor Alert on LAN devices are capable of generating SMBus alerts.

Note that testing was performed on only the read/write byte protocols — corresponding to the capabilities of the
devices on this segment.

B.2.2 PIIX4 SMBus Sample ASL

TEEEEEEEEEEE i
/1 Devi ce: SVBO

R e e
/1 Description: The PIl X4 SMBus segnent (includes the ADMB240 and AOL ASIC).
/1 This ASL assunmes the SMBus is enabled and its registers are
11 | ocated at of fset 0x7000.

IR N N NN NN NN
Devi ce(SMBO)
{

Page 32

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Name(_HI D, "SMBUSO1")
Nanme(_UI D, 0)

Mut ex(SBX0, 0) /1 SMBus transactional synchronization.
/1

/| OperationRegi on:

N T

/1 The Pl X4 SMBus registers reside at offset 0x7000 in system | O space.

/1
Oper at i onRegi on(SMBO, Syst enl O, 0x7000, 0x0C)
Fi el d(SMBO, Byt eAcc, NoLock, Preserve)

{
HSTS, 8, [// Host Status
SSTS, 8, [// Slave Status
HCNT, 8, [// Host Control
HCVD, 8, // Host Command
HADD, 8, // Host Address
DATO, 8, // Host Data Byte O
DAT1, 8, // Host Data Byte 1
BLKD, 8, // Host Block Data
SCNT, 8, [// Slave Count
SCMD, 8, [// Shadow Command
SEVT, 8, [// Slave Event
SDAT, 8 /1 Slave Data

}

I

/1 _SBI (SMBus I nfornation):

R

/1 Returns a SMB_I NFO structure describing the properties of this
/1 SMBus segnent.

/1 Paraneters:
/!l <none>

/1

/1 Return Val ue (Package):

/1 (0) = SMBus Control Method Interface (CM) version (Integer)
11 (1) = SMB_I NFO data structure (Buffer)

/1

Met hod(_SBI)
{

/1

/1 LocalO is the return package. The CM version is set
/1 to vl1l.0 (0x10).

/1

St or e(Package(2) { 0x10, 0x00}, Local 0)

St ore(Buffer()
{

0x10, /1 SMB_I NFO structure Version (v1.0)
0x10, /1 SMBus Specification Version (vl1.0)
0x00, /1 Segnent Hardware Capability
0x00, /1 Alert Polling Interval (no alert capabl e devices)
0x02, /1 Device Count
0x2C, 0x00, /1 SMBus Device #1: ADMB240
0x00, 0x00, 0x11, OxD4, // SMB_UDID... (Device IDis a placehol der)
0x00, 0x01, 0x00, 0xO00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0xO00,
O0x2E, 0x00, /1 SMBus Device #2: AOL ASIC
0x00, 0x00, 0x80, 0x86, // SMB_UDID... (Device IDis a placehol der)
0x00, 0x04, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00
}, Index(Local 0, 1))
Ret ur n(Local 0)
} /1 _SBI
/1
// SWIC (Wait for Transaction Conplete):
e R

/1 Wait until the previous SMBus transaction has conpl et ed.
/1
/| Paraneters:

Page 33

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

/1 Arg0 = Tineout Value (in ns)
11

/1 Return Val ue:

/1 0x00 = K

/1 0x07 = Unknown Failure

/1 0x10 = Address Not Acknow edged
/1 0x11 = Device Error

/1 0x12 = Command Access Deni ed
/1 0x13 = Unknown Error

/1 0x17 = Devi ce Access Deni ed
/1 0x18 = Ti neout

/1 0x19 = Unsupported Protocol
/1 Ox1A = Bus Busy

/1 Ox1F = PEC (CRC-8) Error

/1

Met hod(SWIC, 1)

{

St ore(Arg0, Local 0)
St ore(0x07, Local 2)

/1

/1 The previous conmand has conpl eted when bit 1 ('interrupt status')
/1 of the host status (HSTS) register is set or an error occurs.

/1 Wit <tineout> ns (in 10ns chunks) for this to occur.

/1

Store(1, Local 1)

Wi | e(LEqual (Local 1, 1))

{

/1

/1 Read the hosts status (HSTS) register, mask off bits 4:1, and
/1 check to see if this transaction has conpleted. Note that the
/1 transaction is being processed while these bits are non-zero.

/1
St or e(And(HSTS, O0x1E), Local 3)
| f (LNot Equal (Local 3, 0))
{
/1
/1 See if this transaction was successful. Note that errors
/! are reported in bits 4:2.
/1
| f (LEqual (Local 3, 0x02))
St ore(0x00, Local 2) /'l Success.
El se
St ore(0x07, Local 2) /1 ERROR Unknown Error.
Store(0, Local 1) /1 Term nate | oop.
}
El se
{
/1
/1 Transaction isn't conplete. Check for tineout, and if not,
/1 sleep 10ns and | oop agai n.
/1
| f(LLess(Local 0, 10))
{
St ore(0x18, Local 2) /1 ERROR Tineout occurred.
St ore(0x00, Local 1) /1 Term nate | oop.
El se
Sl eep(10)
Subtract (Local 0, 10, Local 0)
}

}

Ret ur n(Local 2)
} 1/ Method(SWIC)

/1
/1 _SBR (SMBus Read):
/1

Page 34

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

/1

/| Paraneters:

/1 Argo = Protocol Value (Integer)
/1 Argl = Sl ave Address (Integer)
/1l Arg2 = Command Code (I nteger)
/1

/1 Return Val ue (Package):

/11 (0) = Status Code (Integer)
I (1) = Data Length (Integer)
11 (2) = Data (Integer | Buffer)
/1

Met hod(_SBR, 3)
{

/1

/1 LocalO is the return package. The status code is defaulted
/1 to 'unknown failure' (0x07).

/1

St or e(Package(3) { 0x07, 0x00, 0x00}, Local 0)

/1

/1 Make sure the protocol is valid, if not return the

/1 'invalid protocol' status code. Note that this segnent
/1 does not support packet error checking.

/1
| f (LNot Equal (Arg0, 0x03)) /1 Read Quick
I f (LNot Equal (Arg0, 0x05)) /1 Receive Byte
I f (LNot Equal (Arg0, 0x07)) /1 Read Byte
I f (LNot Equal (Arg0, 0x09)) /1 Read Word
| f (LNot Equal (Arg0, 0xO0B)) /1 Read Bl ock
{
St ore(0x19, |ndex(Local 0, 0))
Ret ur n(Local 0)
}
}
}
}
/1

/1 Acquire the SMBus nutex to ensure transactional
/'l synchroni zati on.

/1

| f (LEqual (Acqui re(SBX0, OxFFFF), 0))

{

/1

/1 Translate the slave address (shift left + set 'read" bit) and
/!l wite this and the command byte to the SMBus registers. Cear
/1 the host status register (preserving bits 7:5).

/1

Store(Or(ShiftLeft(Argl, 0x01), 0x01), HADD)

St ore(Arg2, HCMVD)

Store(O (HSTS, 0x1F), HSTS)

/1

/1 Specify the protocol using bits 4:2 of the host control

/'l register (preserving bits 5 & 7) and start the transaction
/1 by witing a'1l to bit 6 of the host control register.

”(LEquaI (Arg0, 0x03)) /1 Read Quick

{ Store(O (And(HCNT, 0xAQ), 0x40), HCNT)
I}f(LEquaI (Arg0, 0x05)) /1 Receive Byte
{ Store(Or (And(HCNT, O0xAQ), 0x44), HCNT)
I}f(LEquaI (Arg0, 0x07)) /1 Read Byte

{ Store(Or (And(HCNT, OxAQ), 0x48), HCNT)
if(LEquaI (Arg0, 0x09)) /1 Read Word

Page 35

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

Store(Or (And(HCNT, 0xAQ), 0x4C), HCNT)

}
| f (LEqual (Arg0, 0x0B)) /1 Read Bl ock
{
Store(Or (And(HCNT, O0xAQ), 0x54), HCNT)
}
/1

/1 Wait (up to 1 second) for the transaction to conplete.

/1 the status code and, if successful, the data | ength and data

/1 into the return package.

/1

St or e(SWIC(1000), Local 1)

St ore(Local 1, |ndex(Local 0, 0))

| f (LEqual (Local 1, 0))
| f (LEqual (Arg0, 0x05)) /1 Receive Byte

Store(1, |ndex(LocalO, 1))
St or e(DATO, | ndex(Local 0, 2))

}
I f (LEqual (Arg0, 0x07)) /1 Read Byte

Store(1, |ndex(LocalO, 1))
St or e(DATO, | ndex(Local 0, 2))

}
| f (LEqual (Arg0, 0x09)) /1 Read Word
{

Store(2, |ndex(Local0, 1))

St or e(DAT1, Local 2)

ShiftLeft(Local 2, 8, Local 2)

Add(Local 2, DATO, Local 2)

St ore(Local 2, |ndex(Local 0, 2))
}
| f (LEqual (Arg0, 0xO0B)) /1 Read Bl ock

/1 TBD...

[N

}
Rel ease(SBXO0)

Ret ur n(Local 0)

} /1 _SBR()

/1

/] _SBW (SMBus Wite):
e T T

/1

/| Paraneters:

/1 Arg0 = Protocol Value (Integer)
/1 Argl = Sl ave Address (Integer)
/1l Arg2 = Command Code (I nteger)
/1 Arg3 = Data Length (Integer)
/Il Arg4 = Data (Integer | Buffer)
/1

/1 Return Val ue (Package):

/1 (0) = Status (Integer)

/1

Met hod(_SBW 5)
{

/1

/1 Local0 is the return package. The status code is defaulted
/1 to 'unknown failure' (0x07).

/1

St or e(Package(1) { 0x07}, Local 0)

Make sure the protocol is valid, if not return the
"invalid protocol' status code. Note that this segnent
pr ot ocol .

(LNot Equal (Arg0, 0x02)) /1 Wite Quick

/1
/1
/1
/1 does not support packet error checking or the 'process call’
/1
/1
I f

Page 36

System Management Bus (SMBus) Control Method Interface Specification Version 1.0

{
| f (LNot Equal (Arg0, 0x04)) /1 Send Byte
| f (LNot Equal (Arg0, 0x06)) /Il Wite Byte
I f (LNot Equal (Arg0, 0x08)) /1 Wite Wrd
I f (LNot Equal (Arg0, O0xO0A)) /1 Wite Block
{
St ore(0x19, | ndex(Local 0, 0))
Ret ur n(Local 0)
}
}
}
}
/1

/1 Acquire the SMBus nmutex to ensure transactional

0))

/1
| f (LEqual (Acquire(SBX0, OxFFFF),
{

/1

/1 Translate the slave address (shift
/1 the command byte to the SMBus registers.

/'l register (preserving bits 7:5).

/1
Store(ShiftLeft(Argl, 0x01),
Store(Arg2, HCMVD)

Store(O (HSTS, 0x1F), HSTS)
using bits 4:2 of the host
register.

(LEqual (Arg0, 0x02))
St or e(O (And(HCNT, 0xAO0),

f (LEqual (Arg0, 0x04))

St or e(O (And(HCNT, 0xAO0),

f (LEqual (Arg0, 0x06))

{ St ore(Arg4, DATO)

St ore(O (And(HCNT, O0xA0),

I f (LEqual (Arg0, 0x08))

And(Ar g4, OxO0FF, DATO)

Shift Ri ght (Arg4, 8, DAT1)

St ore(O (And(HCNT, O0xA0),
I}f(LEquaI (Arg0, 0x0A))

/1 TBD...

St or e(O (And(HCNT, 0xAO0),

/1

/1 Wit (up to 1 second) for the transaction to conplete.

Store the data to be witten (if any),

/
/
/
/ transaction by witing a '1'
/
/
f

HADD)

control register,
/1 Wite Quick
0x40), HCNT)

/1 Send Byte
0x44), HCNT)

/Il Wite Byte

0x48), HCNT)

/1 Wite Wrd
0x4C), HCNT)

/1 Wite Bl ock

0x54), HCNT)

/1 the status code into the return package.

/1
St or e(SWI'C(1000) ,

Rel ease(SBX0)
}

Ret ur n(Local 0)
} /1 _SBW)

} /1 Device(SMBO)

I ndex(Local 0, 0))

synchroni zati on.

left) and wite this and
Cl ear the host status

speci fy the protocol
and start the
to bit 6 of the host control

Store

Page 37

